# 1D Gaussian Quadratures

Gaussian integration (quadrature) methods are numerical approximation of definite integral in a general interval [a,b].

We will apply this to the computation of the integral of a polynomial funcion (exact) and general functions (approximate). ## Gauss quadrature

Gauss quadrature is defined for the reference interval [-1,1] and the choosed points are the zeros of Legendre polinomials represented in the following figure The values and weights for these points in the Gauss quadrature formulas are shown in the following table ## Function to integrate

Let's consider the function Defined in the reference interval [-1,1]

f=@(x) x.^4-3*x.^2+1; %defined as inline function


or it can be also defined as a file function

function y=f(x)

y=x.^4-3*x.^2+1;

## Order of integration (number of Gauss points)

As you increment n the formula is exact for polynomials of degree 2n-1.

n=3;
% because our function is a ploynomial of order 4 we have to choose n=3
switch (n)
case 1
w=2; pG=0;
case 2
w=[1,1]; pG=[-1/sqrt(3), 1/sqrt(3)];
case 3
w=[5/9, 8/9, 5/9]; pG=[-sqrt(3/5), 0, sqrt(3/5)];
otherwise
error('No data are defined for this value');
end


## The final formula

You can use a sequential formula

sumat = 0;
for i=1:size(pG,2)
sumat = sumat + w(i)*f(pG(i));
end
intFseq = sumat

intFseq =

4.0000e-01



or equivalently, a compact form of the same value

intFcompact = sum(w.*f(pG))

intFcompact =

4.0000e-01



Check the error against the actual value

primitiveF=@(x) x.^5/5-x.^3+x;
barrowRule=primitiveF(1)-primitiveF(-1);
errorInt = abs(barrowRule - intFcompact)

errorInt =

2.2204e-16



## Exercise 1:

make the assignment of the Gauss points and weight values a Matlab function for n=1,..5 (check n <=5, bigger values are not allow, use the following sentence).

error('No data are defined for this value');

According to the table included above you have to implement and get the results:

function [w,pt] = gaussValues1D(n)

for n=1:6 %for n=6 must return an error
n
[w,pt]=gaussValues1D(n) %function to be implemented
end

n =

1

w =

2

pt =

0

n =

2

w =

1     1

pt =

-5.7735e-01   5.7735e-01

n =

3

w =

5.5556e-01   8.8889e-01   5.5556e-01

pt =

-7.7460e-01            0   7.7460e-01

n =

4

w =

6.5215e-01   6.5215e-01   3.4785e-01   3.4785e-01

pt =

-3.3998e-01   3.3998e-01  -8.6114e-01   8.6114e-01

n =

5

w =

4.7863e-01   4.7863e-01   5.6889e-01   2.3693e-01   2.3693e-01

pt =

-5.3847e-01   5.3847e-01            0  -9.0618e-01   9.0618e-01

n =

6


Error using gaussValues1D (line 19)
No data are defined for this value

Error in Gauss1D (line 83)
[w,pt]=gaussValues1D(n) %function to be implemented


## Exercise 2:

Using the function gaussValues1D, approximate the value of the integral in [-1,1] of the function f(x)=cos(x). Use different values of n and show the errors comparing with the true value 2*sin(1)

Sol:

n, error

1   3.1706e-01
2   7.1183e-03
3   6.1578e-05
4   2.8092e-07
5   7.9140e-10

(c) Numerical Factory 2016