1-Dim wave equation

Finite differences applied to the solution of a 1D wave equation PDE.
Consider the following 1D heat problem where the high function depends on space and time
with initial condition
and boundary conditions .
Solve this problem for the parameter values
The finite differences equation are (semi-implicit method)
if we define
then it can written in terms of components as
clear all;
%-------------------------------------------
% Initialize variables
%-------------------------------------------
dt = 0.01; %time step
dx = 1/100; %space step
c = 0.05; %propagation coeff.
r = c/dx^2; % dt*c/dx^2; the dt term is added in the solver step
x = 0:dx:1;
m = length(x);
u = zeros(1,m);
v = zeros(1,m);
%--------------------
% Time evolution
%--------------------
numIter = 750;
t = 0; %time
for step=1:numIter
t = t+dt;
%-----------------------------------------------------
% compute acceleration values (forces) that modify velocity
%-----------------------------------------------------
for j=1:m
jleft = j-1;
if (j==1), jleft=1; end
jright = min(j+1,m);
if (j==m), jright=m; end
force(j) = r*(u(jleft)-2*u(j)+u(jright));
end
%------------------------------------
%Solver: Semi-Implicit Euler Method
%------------------------------------
v = v + dt*force; %update velocities
u = u + dt*v; %update positions with the updated velocities
%------------------------------------
u(1) = 3*sin(5*t); %impose boundary conditions;
u(end) = 0;
% -----------------------------------
plot(x, u);
axis([-0.1,1.1,-10,10]);
text(0,8,['time = ' num2str(t)]);
drawnow;
end
Exercise 1:
Simulate the results when we consider:
initial condition and the following initial conditions to create an initial wave:
and
boundary conditions .